Keyword

soil temperature

261 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 261
  • Categories    

    The far north Queensland microclimate (FNQ-microclim) is an ongoing long-term microclimate monitoring project from across five tropical rainforest sites (Daintree Rainforest SuperSite, Cape Tribulation; Daintree Rainforest SuperSite, Cow Bay; Rex Range; Mt. Lewis National Park; and Mt. Bellenden Ker), located within an elevation range of 40 - 1550 m a.s.l. Microclimate parameters include: a) air temperature (about 15 cm above ground), b) near surface temperature at the interface between soil and air (less than 1 cm above ground), c) top soil temperature (about 8 cm below ground), and d) top soil moisture (up to 10 cm below ground). Data are recorded every 15 minutes using the TMS-4 sensors (Temperature Moisture Sensor, T.M.O.S.T s.r.o, Prague, Czech Republic).

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Daintree Rainforest, Cow Bay site between 2011 - 2014.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Robson Creek Rainforest site between 2011 - 2014.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Daintree Rainforest, Cape Tribulation site between 2007 - 2015.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Tumbarumba flux station is located in the Bago State Forest in south eastern New South Wales. It was established in 2000 and is managed by CSIRO Marine and Atmospheric Research. The forest is classified as wet sclerophyll, the dominant species is Eucalyptus delegatensis, and average tree height is 40m. Elevation of the site is 1200m and mean annual precipitation is 1000mm. The Bago and Maragle State Forests are adjacent to the south west slopes of southern New South Wales and the 48,400 ha of native forest have been managed for wood production for over 100 years. The instrument mast is 70m tall. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. Profiles of temperature, humidity and CO2 are measured at seven levels within the canopy. Soil moisture content is measured using Time Domain reflectometry, while soil heat fluxes and temperature are also measured. Hyper-spectral radiometric measurements are being used to determine canopy leaf-level properties. The Tumbarumba flux station is supported by TERN and the DCCEE through the ACCSP. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/tumbarumba-wet-eucalypt-supersite/. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Collie flux station was located approximately 10&nbsp;km southeast of Collie, near Perth, Western Australia. It was established in August 2017 and stopped measuring in November 2019. </br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em>. Climate information comes from the nearby Pingelly BOM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximum and minimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Collie flux station was located approximately 10&nbsp;km southeast of Collie, near Perth, Western Australia. It was established in August 2017 and stopped measuring in November 2019. </br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br> The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer from an Almond Orchard in South Australia's Riverland, using eddy covariance techniques. <br /> <br /> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br> The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>